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Analysis of TEM Mode on a Curved Coaxial
Transmission Line

JEROME J. KREMPASKY

Abstract —Through the use of a perturbation approach, explicit ex-
pressions are derived for the changes in the electromagnetic field
structure that occur when a TEM mode on a coaxial transmission line
enters a bend in the line. All of these changes are evaluated to at least
first order in the inverse of the radius of curvature of the coaxial line.
An explicit expression is also constructed for the first nonvanishing
correction term to the propagation constant, which turns out to be of
second order. Graphical results are presented for the variation of the
propagation constant as a function of curvature and other parameters
characteristic of the coaxial line.

I. INTRODUCTION

‘WO OF THE earliest authors to employ a perturba-

tion technique to analyze propagation of eclectromag-
netic waves in curved structures were Jouguet [1] and
Riess [2]. In their papers, Maxwell’s equations expressed
in conveniently selected curved coordinates were ex-
panded in inverse powers of the radius of curvature.
From the resulting equations, first-order solutions for the
propagation constant and field distribution were obtained
for waveguides of rectangular and circular cross sections.
In particular, it was found that the TE, mode in a
circular waveguide breaks up into the sum of two distinct
modes, which resemble the sum and difference of the
TE,; and TM; modes, as it propagates around a bend.
By contrast, the TE;; mode in a rectangular waveguide
propagates with little alteration in structure around a
bend. By employing concepts from the theory of coupled
transmission lines, Albersheim [3] was able to derive
further results relating to the propagation of TE,; waves
in curved waveguides. In so doing, he reproduced some of
the equations deduced by Jouguet.

Propagation of clectromagnetic energy in curved circu-
lar waveguides was later addressed again by means of a
perturbation technique, this time by Lewin [4], [5]. In a
rather elegant fashion, he utilized bicomplex variables to
decouple the various field components from Maxwell’s
equations, thereby creating a decoupled wave equation
for a new field combination. This field combination was
essentially a linear combination of the components of the
electric and magnetic fields taken along the continuously
bending axis of the waveguide. In constructing the decou-
pled wave equation, a curvilinear set of local orthogonal
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coordinates erected around the axis of the bent wave-
guide was employed. This set of coordinates was devel-
oped from the work of Tang [6], who had shown how
orthogonal systems could be constructed from the
Serret—Frenet frame of an arbitrary curve. The decoupled
wave equation was then solved to first order by the
previously employed perturbation technique of expanding
in inverse powers of the radius of curvature. As a result,
expressions for the axial fields and propagation constant
characterizing each of the two distinct stable combina-
tions of the TE,; and TM,, modes were obtained.
Perturbation approaches have also been used to ana-
lyze wave propagation in curved structures other than
waveguides of constant cross section and curvature. In
particular, Lewin [7] applied a perturbation technique to
solve the problem of a rectangular waveguide uniformly
twisted about a straight axis. In addition, Chang and
Kuester [8] analyzed bent dielectric guides of arbitrary
cross section, and Tripathi and Wolff [9] treated curved
microstrip resonators, both using perturbation ap-
proaches. Although many other authors have dealt with
the problem of electromagnetic waves on various curved
guiding structures, it appears that a detailed analysis of a
propagating TEM mode on a bent coaxial transmission
line has not yet been performed. Specifically, explicit
analytical expressions for the propagation constant and
field structure present in a bent coaxial line have not yet
been deduced. It is the intent of this paper, then, to
develop such analytical expressions by means of the per-
turbation technique first employed by Jouguet and Riess.
With regard to the organization of this paper, it com-
mences with a brief presentation of the characteristics of
the pure TEM mode supported by a straight coaxial
transmission line. An appropriate orthogonal coordinate
system for the bent coaxial line is then established, after
which Maxwell’s wave equation is written in terms of
these coordinates and, subsequently, expanded in inverse
powers of the radius of curvature. This expansion permits
analytical forms for the axial fields to be derived to first
order and, later, to second order. Lewin’s wave equation
for his field combination of axial components [5] is then
used in conjunction with the derived first-order axial field
expressions to show that the propagation constant re-
mains unaltered to first order. For the sake of complete-
ness, the field components transverse to the axis of the
bent coaxial line are also evaluated to first order by
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employing the appropriate Maxwell’s equations. In an
effort to obtain the first nonvanishing correction term in
the propagation constant, the axial field components are
then evaluated to second order in the inverse of the
radius of curvature. Taken in conjunction with Lewin’s
wave equation, these results are utilized to obtain an
expression for the second-order correction to the propa-
gation constant, which is the desired first nonvanishing
correction term, Finally, graphical results depicting the
behavior of the propagation constant in a bent coaxial
line are presented.

II. FirsT-ORDER AXIAL FIELDS

For a pure TEM mode propagating on a coaxial trans-
mission line, the electric field has only a radial compo-
nent and the magnetic field only an azimuthal compo-
nent. This simple mode structure, which propagates
unattenuated, is realized in a straight section of coaxial
line having conductors of infinite conductivity. The fields
existing between the inner and outer conductors in the
TEM mode are expressible as

1 1
# H $0 = —2— .
mp

€ 2%7p

p0 (1)
The variables p and ¢ denote, respectively, the radial and
azimuthal cylindrical coordinates, while I denotes the
axial (z-directed) current flowing in the inner conductor.
In these equations, the multiplicative propagating factor
exp(jwt — jkz) has been suppressed. Here o denotes the
angular frequency and k the wavenumber or straight-line
propagation constant. In terms of the permittivity ¢ and
the permeability p of the dielectric between the inner and
outer conductors, k and o are related by k% = w?ue.

To solve for the propagating fields in a bent section of
coaxial transmission line, it is desirable to establish an
orthogonal coordinate system crected around the coaxial
line axis. Following the work of Tang [6] and Lewin [4],
we find that it is convenient to employ the cylindrical
orthogonal set of coordinates shown in Fig. 1. Here the
location of an arbitrary point P is seen to be specified by
the coordinate set (p,d,s), where p and ¢ constitute
transverse polar coordinates relative to the continuously
bending axis of the coaxial line. The axial coordinate s
specifies the location of the cross-sectional plane contain-
ing P along the transmission line axis relative to some
reference point. Assuming that the coaxial line is bent in
one plane and that it has a constant radius of curvature
R, we can write the metric coefficients for this coordinate
system as

h =1 h=1-2 2
P s R cos ¢7 ( )
It is to be noted that these metric coefficients reduce to
those appropriate for the normal cylindrical coordinate
system as the coaxial line is straightened, i.e., as R —co.

Having established a convenient orthogonal set of coor-
dinates for the problem at hand, we commence now to
solve Maxwell’s electromagnetic equations for the propa-

hy=p
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(b)

Fig. 1. Geometry of curved coaxial transmission line. (a) Definition of
orthogonal coordinate system employed in the analysis. (b) Cross-sec-
tional view of line.

gating field distribution. For an assumed e/*’ time depen-
dence, Maxwell’s three-dimensional wave equation for the
magnetic field is

~VZH=VXVXH-V(V-H)=Kk*H  (3)

where H=H,p+ H¢¢; + H§. The s component of this
equation yields a partial differential equation for H_, the
magnetic field component in the direction of propagation.
Since we seek a solution propagating as e™**, the differ-
ential operator 9 /ds can everywhere be replaced by — vy,
whereupon the field components will depend only upon p
and ¢. Upon making this replacement and employing the
metric coefficients given in (2), we find that the differen-
tial equation for H, becomes

—2v 2y h? 9 H,
COS¢HP+E—SIH¢H¢+R;)$ chosqS
h* 9 (H
—h2VPH — — —| —sing | = (y?+h?k?)H,.
s 't K Rp 34'7 ( hs Slnd)) (7 +hs )Hs

(4)

Here V? denotes the so-called transverse Laplacian oper-
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ator, i.e.,
1 92

L0 ( F )
e —p— |+ —=—.
" opap\"op ) p? e’

Equation (4) is a complicated partial differential equation
into which the solutions (as yet unknown) for the trans-
verse field components Hy and H, are coupled. Written
as such, it cannot be solved in closed form.

A solution for this equation can be effected if one
employs a perturbation technique [4], whereby the field
components and the propagation constant are each ex-
panded into a series containing inverse powers of the
radius of curvature, i.e.,

(5)

H, H,
<0 R HP=HPO+—E—+"'
Hyo+ —2 4 I PR
™ v =v|lr g

(6)

The zeroth-order terms appearing here are those which
are appropriate for the TEM mode in a straight coaxial
transmission line. Accordingly, we have

Hy, = HpO =0 Yo = Jk (7)

and H,, is given by the second expression of equations
(1). To first order in R~ (4) reduces, with the aid of (1),
(2), and (6), to

JkI sin ¢
mp

Vtszl = (8)

The solution to this differential equation has been found,
following the general procedure outlined in Andrews [10],
to be

jkI sin X X
Hsl(P7¢)=m p{b*In(p/b)—a’In(p/a)
tat— b+ '1n(a/b)}. (9)

As shown in Fig. 1, b constitutes the radius of the inner
conductor and « the inner radius of the outer conductor.
The boundary conditions utilized in arriving at (9) are
specified by the vanishing of dH; /dp at p=a and p = b.

Through the use of a similar procedure, a solution for
the axial electric field to first order in R™' can be
obtained. Since the three-dimensional wave equation is
identical in form to that for the magnetic ficld, ie.,
—VZ2E = k*E, the differential equation for E, is de-
ducible from (4) simply by replacing H wherever it ap-
pears with E. A solution to the resulting equation can
then be effected by employing the perturbation technique
discussed above, whereupon the field components can be
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expanded as
El
ES=ES0+—R;~+
E
— pl ..
Ep = 'EpO + —E -+
_ Eg
E¢—-.E¢O+?+"’. (10)
Recognizing that E ;= Ez, =0 and that E, is given by

the first expression in (1), we find that, to first order in
R}, the differential equation for E,; reduces to

. - jkIcos ¢
K

The solution to this differential equation that satisfies the
perfect conductor boundary conditions that E must
vanish at p =a and p = b is given by

kI
E (p, )= V/—“ 21(b208¢ [ {a*In(p/a)

21,2
-b>In(p/b)}+

(11)

ln(a/b)]. (12)

With the construction of the equations for H; and E,
we have obtained the complete axial solutions to order
R~! for the propagating field configuration in a bent
section of coaxial line.

IIT. FirsT-ORDER CORRECTION TO

PrROPAGATION CONSTANT

To find the first-order correction to the propagation
constant v, it is necessary to resort to the decoupled wave
equation developed in [4] for the axial field combination

G,, defined as
o
G, = Etjy — H,.
- €

The wave equation satisfied by G, is

(13)

V2G, +(k*+y*/h?)G,
1 (1

:—-—er{E(kz—yz/lzf)Gi+hs(k2+3y2/h§)
[ qbaGi sin ¢ (?G+]
-1 COS -

dp p d¢

G, cos¢ IG,

i — —~ 14

+2vk|sing P + P } (14)

where I'?=k?h%+y% Now G, is itself expandable in
inverse powers of R according to

(15)

+,0

where G, =0 since E,= H,, =0 and

LM
Gy = Egtj Ve Hy.

(16)
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By retaining terms only to first order in R™%, we can
construct the differential equation governing G, ; from
(14); the result is

(—2pcosd— A)V7G,

aG,, sing¢ 3G+1}
= —2|cos — — =
{ ¢ dp p 0
G cos ¢ G
+2j|sin—=1 + i’l}. (17)
dp p 9P

Here A;, as shown by the last expression in (6), is the
coefficient of the first-order term in the expansion of y?2
in inverse powers of the radius of curvature. Upon substi-
tuting the relationships for H; and E,, derived above
into (17), we find that this equation is satisfied only if

A,=0. (18)

Consequently, y? = y2 = — k? through first order in R},
which is to say that the propagation constant for a straight
section of line remains unaltered through first order in
R~ in a bent section of line. This corresponds to a
specific finding in [5], namely, that there is no first-order
change in the propagation constant in a circular wave-
guide when the TM;; mode with electric polarization
parallel to the plane of the bend propagates into a curved
section of guide. We proceed now to evaluate the first-
order terms for the transverse components of the field
distribution present in a bent coaxial line.

IV. First-OrRDER TRANSVERSE FIELDS

The partial differential equation governing H L1 the
first-order correction to H,, can be obtained by equating
the p components on both sides of (3). After replacing
d/ds by — v and utilizing the metric coefficients given by
(2) in conjunction with the indicated differentiations, we
obtain the following differential equation for H,;, valid to
first order in R~
2 9H,, sin¢

p* 3¢
Although the analytical form for H,, is given by the
second expression in (1), the analytical form for H,, is as
yet unknown. Nevertheless, H,; can be eliminated from
(19) through the use of the Maxwellian equation

2 HPl
H¢O*V1‘le+7=0. (19)

1
V-H=0=—

J d Jd
Py g(PhaHp)Jr @(’%Hzﬁ) + g(pHs)

(20)

s

which, to first order in R~ ', becomes
3 _ oH,,
0= a(ple)‘F pSlIl(].’)Hd)O + —0(;5— —vopH. (21)

Combining (19) and (21) to eliminate H,;, we obtain the
desired differential equation for H,,, i.e.,
H 2 0H 2
VzZle + _21 + - == ﬂHs1 -
p p dp p

sin ¢
—Hy,. (22)
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The form of the forcing function appearing on the right-
hand side is known completely, being given in terms of
the expressions found in (1) and (9). After performing
lengthy and nontrivial manipulations, we find the solution
to (22) to be
" Ising k*a’*b%k,  a’b? | )
= +
Pl(p’d)) W(bz_az) (b2_a2)p2 4p2 n(a/ )

Kk 1 72z 2_ ,2
+m—1f1(0)+3—2kp (b*—a?)
Za2b2 k2p2
—mln(fl/b)fﬂp)_Tﬂ(P)
(23)
where
7 2p2
kl=3—2(b2—a2)2+a71n2(a/b)
7
k2=—§(a6—a4b2—a2b4+b6)
2b2
+T(b2~a2)ln(a/b)
fillp) =b*In(p/b)—a*in(p/a). (24)

The solution for H,, conforms to the boundary condition
which requires that the normal component of the mag-
netic field vanish at the surface of a perfect conductor. In
terms of the geometry under investigation, this implies
that H,; must vanish at p =g and p = b.

The remaining first-order component of the magnetic
field, Hy,, can be found from the differential equation
which results from equating the ¢ components on both
sides of (3). It is, however, easier to obtain a solution for
this quantity by integrating (21) with respect to ¢ since
H,; is now known. Upon performing the integration, we
find that H,, is expressible as

Icos ¢ k’a’b’k,  a’b?
Hd)l(p:(l)):ﬂ_(bz_az) {_(bz—az)pz—— 4p2 ln((l/b)
Kk, 1 o
+(b2_a2)_zfl(p)+ 32 (b _a)
k2a’b?
~Zﬁ(mln(a/b)ﬂ(m

k2p? 1 '
+Tf1(P)+Z(b2-az)}- (25)
From this relationship, one can calculate to first order in
R™! the amount by which the already existing azimuthal
magnetic field of the TEM mode is modified in a bend of
the coaxial line.

To find first-order solutions for the transverse compo-
nents of the electric field, namely E, and Eg, it is
easiest to resort directly to Maxwell’s curl equations.
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From the ¢ component of the Maxwell equation VX E =
~ jou H, we obtain

jouh 1
q=———ﬁg———{h 3.
Y Y dp
To first order in the inverse of the radius of curvature,
this equation becomes, with the aid of the last expression
in (2),

(26)

(27)

€

5 ] aEsl
E, =y — (H,y — pcos pHyg) + X

Upon utilizing (1), (12), and (25), we obtain finally the
following solution for E :
k?a*b’k,

Icos ¢
pl(p $) = \/—-ﬂ_(bz {_(b%—dz)pz

a’b’ k?

s In(a/b)+

2 1
(bz—_;z—)ﬂLZfl(P)

2.2 k2a2b2

k‘p’ 2 2
+—(b —-a ) m

3 In(a/b)fi(p)

2 pZ 1
+—“8—f1(P)+Z(b2—02)}- (28)
A comparison with (23) and (25) reveals that no new
terms appear in the expression for E,; that were not
present in the expressions for the first-order transverse
magnetic field components.

By proceeding in a similar manner, we can deduce a
solution for the first-order contribution to the azimuthal
electric field in a'bent section of coaxial line. Specifically,
we find that the ¢ component of the Maxwell equation
VX H = jweE yields the following equation for E,:

: mol,

d
E, = —yH ——(h
oo |72t
Expanding this equation to first order in R™1, we find
that E; satisfies

(29)

—k

()

] 0

—H_.
ewc') si

(30)

Through a utilization of (9) and (23), we obtain the
solution for E,,; in final form, namely,

E [ Ising k%a’b%k,
¢1(P,¢’) = e w(bz—az) (bz—az)pz
a’b? k%k
> In(a/b)+

2

(b* - a?)

1 lkZ 2 b2_ 2y k2a2b2
+Zf1(p)+ 32 P ( a ) Z(bz_az)
°1n(a/b)f1(p)—Tpf1(p)}~ (3
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This expression, it should be noted, satisfies the boundary
condition that the tangential component of the electric
field must vanish at the surface of a perfect conductor,
Le, £y =0at p=a and p=>b. With the construction of
(31), we have completed the task of obtaining solutions
for all field components from Maxwell’s equations to first
order in the inverse of the radius of curvature of the bent
coaxial line.

V. SeconDp-ORDER AXIAL FIELDS

To find the first nonvanishing correction to the propa-
gation constant v, it is necessary to proceed to the second
order in R™!. Firstly, second-order solutions for the prop-
agating axial field components must be derived from the
appropriate differential equations for H, and E,. These
second-order solutions, denoted by H,, and E,, are just
the coefficients of the second-order terms in the expan-
sions of H and FE in inverse powers of R, i.e.,

H H
H5=H;0+_§+R522+
ki Es2
2
s0 R Rz (3 )

Secondly, H,, and E , must be substituted into the
differential equation governing the second-order solution
for the axial field combination G, ,, defined by

[ M
G+ 1= Eszij - HSZ'
- €

It is then a straightforward matter to solve for A4,, the

coefficient of the second-order term in the expansion of
2 .

v°, ie., :

(33)

A,
1+F+

(34)

’)’ —'}’0

In writing this relationship, we have used the previously
deduced fact that the first-order correction to y? van-
ishes.

The partial differential equation from which H, is
obtainable can be constructed by expanding (4) to second
order in R™' and, subsequently, retaining only those
terms proportional to R™2 Since terms containing the
first-order field solutions H,,, H,;, and H,, appear in the
resulting expression, it is then necessary to utilize the
previously derived solutions found in (9), (23), and (25).
As a result, we find that the differential equation govern-
ing H_, becomes, after some rearrangement,

a
V’H,, = jkI Sin2¢{ —; +a,p’fi(p) +azp® + 44} (35)
p
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where
1 4k7a7b2k _
3k?
11k2
“= " o
= 5=y B0 ) KB (/). (9

It can be shown that the solution for H,, which satisfies
the appropriate boundary conditions is given by

JkIsin2¢ hy
Hyo(p.$) = —5—5-{ i’ + hyp’fo(p) + —
m(b? - a?) p?
i)+ hsp' + (37)
where f, is the following function of p:
fap) =04 (p/b)~a*In(p/a).  (38)

The various /1, appearing in (37) are constants defined by
hl 2(b2 ){ 5(a4—b4)
+4b,a’b?In(a/b)(g.a* — g,b*) +4b,(a® — b%)

+ b, (b~ az)(g3“6 - g4b6)}
wbs

h, =
2 b2+a2

hy= g ){4b4(a2—bz)[4b3—b2(a2_b2)]

s 4b,(a* — b?)
+2a*b*In(a /b) b5+——];—2— }

hy=m(b*>—a*)b,
hs=m(b*—a*)b,

he=m(b*—a?)b, (39)
with
1 2 2
81= k242 82 k2p2
4 4
g3:1+k2az g4:1+k2b2
_& _O P o
212 TR T )
- a a,
by = &
.= bs=- (40)

The solution for H, given by (37) conforms to the bound-
ary conditions that dH,, /dp=cos¢pH, at p=a and
p = b, which are deducible from Maxwell’s equations.
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By following a procedure similar to that outlined above,
the partial differential equation for the axial electric field
to second order in R~ can be deduced. The result, which
follows from a consideration of the explicit analytical
forms for the first-order field components E;, E,;, and
Ey, i

VE,, = jknl{cos 2¢

€1 ~
o2 +ep’fi(p) +esp’ +ey

Festegp® +erfi(p) + cgp%(m} (41)

where 1 denotes the intrinsic impedance of the dielectric
medium between the conductors of the coaxial line, i.e.,

m
=y - (42)
The ¢, coefficients appearing in (41) are defined as

1 2k*a’b%k, 22 ,

QT a ) | (r—a) ¢ nlast)
3k?
T T (b - a%)
3k?

T

1 3 2,232
C4=m{—5(b“—a“)+ ln(a/b)}

1 2k%k, 3

— — —— — — b2 _ 42
“ Tl’(bz*‘(lz){ (b —a?) 2( a’)
2212
ln(a/b)}
k2

Ce = — Z;

1 k%a’b® | 1
€= m(b*—a?) | (b>—a?) n(a/b)=

— k2

(43)

Once again following lengthy computations, we arrive at
the following analytical solution for E,:

Jenl

w(b*—a?)

+epfi(p) +esp + e

E(pod) = {cosz¢

€3
e,p’ +e,p’fo(p) + ?

2 4 2 2

. P ~ _ P . P
+Csz+06E+C7Zf1(P)+C7I(az_b2)

4 4
. P . P - ~
+ e fi(p) +Eso (a2 =b%) +é 1np+01o}-

(44)
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The various e; found in this equation are constants de-
fined by _

€= W{d2a2b2(04 - b4) 11'1(61/b)

+ds(a® = b°) + d(a* — b?))

mds

ey =———
2 p24 g2

r
ey = Wa—z){aga“b“(bz —a?)+d,a*b*(a® - b?)

— dsa*b*In(a /b))
e,=m(b*—a?)d,

es=m(b>—a*)d,

ec=m(b>—a?)d, (45)
where
62 C3 2
d, =2 B _ 20 2
277 3= gt )
¢ ¢
d4:_z 5_—'14‘. (46)

With regard to the coefficients é5 through ¢é; appearing in
(44), they are expressible in terms of the previously de-
fined ¢, by

¢, =m(b*—a%)c, (47)

where i=35, 6, 7, 8. Expressions for the remaining ¢,
coefficients, ¢, and ¢,,, are

ety e
64(b%>—a

" Tn(a/b)
—lkzazbzln(a/b)— l(bz—az)
32 8

ey [6° + ab — a?b?(b% + a?)]

(a’Inb—b?Ina) a’*b?

(bz_aZ) Co— 4 In(a/b)é,. (48)

C1o

As with E;, FE_, satisfies the boundary conditions
E (a,¢)= E(b,¢)=0; i.ec., it vanishes at the surfaces of
the inner and outer conductors. With the development of
(37) and (44), the solution of Maxwell’s equations for the
axial fields to second order in R™! is complete.

VI. SeconD-ORDER CORRECTION TO

PROPAGATION CONSTANT

The partial differential equation governing the second-
order axial field combination G, ,, defined by (33), is
deducible by retaining only terms of second order in R™*
in the general differential equation for G, i.e., (14). The
result, obtainable with the aid of (34) and the last expres-
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sion in (2), is
) 5 A,
—pcos pVAG, , + (Ep‘ cos? ¢ — T)V,ZGJL1

+2k%p?cos? pG,
d

d 1
=Gi71—-(cos«;bgf;Gi,z—;sin(ba—(thz)

+j

.0 G 1 d G
smd)% i,2+-;cos¢>£ 42

d 1 )
¢j2pcos¢(sin¢~G+ (+—cosdp—G, 1). (49)
op T p T Pag e
Upon substitution of the derived analytical forms for the
axial fields which comprise G, ; and G, ,, specifically (9),
(12), (37), and (44), equation (49) evolves into a multitude
of terms. It turns out that the resulting equation is satis-
fied only if A4, has the following functional form:

y 2 7k?
> In(a/b) | 64(b>—a

7 [bS+a® — a®b?(b*+a?)]

7 1
12,4232 o 2 __ .2
32k a*b*In(a/b) 8(b a )}

7 , a*b?
L2 2
32(b a’) + >

. 2k?a’b? { In?( /b)}
_— n“{a .

(b%-a?)’
(50)

This expression then, as an examination of (34) reveals,
constitutes the desired first nonvanishing correction to
the propagation constant.

VIL

Plotted in Fig. 2 are curves depicting how the fields
which exist in a straight section of coaxial line, namely E,
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Dependence of E; and H, upon radial coordinate for 141
cable at 10 GHz.

Fig. 3.

and H,, change upon entering a bent section of coaxial
line. The independent variable here is the ratio of the
outer conductor (inner) radius to the transmission line
radius of curvature, a /R. Hence, a /R = 0 represents the
case of infinite radius of curvature, i.e., the straight coax-
ial line. The dimensions of the transmission line employed
here are those which are appropriate for the commonly
used 141 solid dielectric cable, in which Teflon serves as
the dielectric. For this particular line, the outer conductor
outer diameter is 0.141 in, the characteristic impedance is
S50 Q, and a/b=3.27. With regard to the range of the
variable a /R, it should be mentioned that mechanically a
safe “bend” radius for the 141 cable corresponds to
a /R=10.18, while an extreme case in which the inner
bend radius equals the cable radius corresponds to a /R
=(0.42. The field magnitudes appearing in Fig. 2, de-
ducible through the use of (1), (25), and (28), are evalu-
ated at p=»b and f=10 GHz and subsequently normal-
ized to unity at @ /R =0. An examination of this figure
reveals that |E | decreases, whereas |H,| increases, upon
entering a bent section of the coaxial line. :
With regard to the field components that do not exist in
a straight coaxial transmission line, these are plotted in
Figs. 3 and 4 for the bent 141 solid dielectric cable. In
particular, the (first-order) axial fields £, and H_, which
are calculable from (9) and (12), appear in Fig. 3, while
. the transverse fields £, and H,, calculable from (23) and
(31), appear in Fig. 4. In these graphs, the independent
variable is the normalized radial coordinate, p /b, while
the radius of curvature is held fixed at R=0.147 in
(which corresponds to a /R = 0.4). The field magnitudes,
which are evaluated at 10 GHz as in Fig. 2, are refer-
enced to E,, (p = b) for the electric field components and
to Hyy (p=>b) for the magnetic field components. It is
seen from Figs. 3 and 4 that even in the case of the severe
radius of curvature under consideration, the field compo-
nents which exist only in a bent section of the 141 coaxial
line amount to less than 7% of the straight-line unper-
turbed fields.
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Fig. 5. Dependence of propagation constant upon radius of curvature
for 141 cable.

Plotted in Fig. 5 are curves depicting the dependence
of the normalized propagation constant upon the radius
of curvature of a bent coaxial transmission line. Once
again, a bent section of 141 solid dielectric cable is
assumed to be the propagating medium for the perturbed
TEM mode. The dependent variable plotted here is 8/ k,
where B=1vy/j, and as such is the ratio of the phase
constant for the bent cable to that for the straight cable
since A, is real. Three curves, each corresponding to one
of the three commonly utilized operating frequencies of 1,
10, and 20 GHz for the 141 cable, appear in Fig. 5. An
examination of this figure reveals that the propagation
constant can increase (the 20 GHz curve does very slightly)
or decrease when the propagating TEM mode enters a
bend, depending upon the value of frequency. It is noted
that results which are numerically quite close to those of
Fig. 5 can be obtained for a 085 solid dielectric cable,
which is also a commonly used coaxial line. This cable has
an outer conductor outer diameter of 0.085 in and a
characteristic impedance of 50 ().
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VIII. CoNcLUSIONS

A TEM mode propagating along a coaxial transmission -

line will cease to be purely TEM in character upon
entering a bend, since there it will develop axial compo-
nents of both the electric and magnetic fields. Moreover,
an azimuthal electric field and a radial magnetic field, not
present in the pure TEM mode, will arise in the bend.
With regard to the existing azimuthal magnetic field and
radial electric field, they will experience some change in
magnitude in the bent section. of line. In all cases, the
alterations in the -electromagnetic field structure will be
inversely proportional to the radius of curvature of the
bend, for small amounts of curvature. On the other hand,
the propagation constant of the wave suffers a change in
magnitude inversely proportional, for small curvature, to
the square of the radius of curvature. In addition, this
change in magnitude is dependent upon the values of the
straight-line propagation constant and the inner and outer
conductor radii.
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