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Analysis of TEM Mode on a Curved Coaxial
Transmission Line

JEROME J. KREMPASKY

Abstract —Through the use of a perturbation approach, explicit ex-

pressions are derived for the changes in the electromagnetic field

structure that occur when a TEM mode on a coaxial transmission line

enters a bend in the line. All of these changes are evaluated to at least

first order in the inverse of the radius of curvature of the coaxial line,

An explicit expression is also constructed for the first nonvanishing

correction term to the propagation constant, which turns out to be of

second order. Graphical results are presented for the variation of the

propagation constant as a function of curvature and other parameters

characteristic of the coaxial line.

I. INTRODUCTION

T WO OF THE earliest authors to employ a perturba-

tion technique to analyze propagation of electromag-

netic waves in curved structures were Jouguet [1] and

Riess [2]. In their papers, Maxwell’s equations expressed

in conveniently selected curved coordinates were ex-

panded in inverse powers of the radius of curvature.

From the resulting equations, first-order solutions for the

propagation constant and field distribution were obtained

for waveguides of rectangular and circular cross sections.

In particular, it was found that the TEOI mode in a

circular waveguide breaks up into the sum of two distinct

modes, which resemble the sum and difference of the

TEOI and TMII modes, as it propagates around a bend,

By contrast, the TEOI mode in a rectangular waveguide

propagates with little alteration in structure around a

bend. By employing concepts from the theory of coupled

transmission lines, Albersheim [3] was able to derive

further results relating to the propagation of TEO1 waves

in curved waveguides. In so doing, he reproduced some of

the equations deduced by Jouguet.

Propagation of electromagnetic energy in curved circu-

lar waveguides was later addressed again by means of a

perturbation technique, this time by Lewin [4], [5]. In a

rather elegant fashion, he utilized bicomplex variables to

decouple the various field components from Maxwell’s

equations, thereby creating a decoupled wave equation

for a new field combination. This field combination was

essentially a linear combination of the components of the

electric and magnetic fields taken along the continuously

bending axis of the waveguide, In constructing the decou-

pled wave equation, a curvilinear set of local orthogonal
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coordinates erected around the axis of the bent wave-

guide was employed. This set of coordinates was devel-

oped from the work of Tang [6], who had shown how

orthogonal systems could be constructed from the

Serret–Frenet frame of an arbitrary curve. The decoupled

wave equation was tlhen solved to first order by the

previously employed perturbation technique of expanding

in inverse powers of the radius of curvature. As a resuh,

expressions for the axial fields and propagation constant

characterizing each of the two distinct stable combina-

tions of the TEOI and TMII modes were obtained.

Perturbation approaches have also been used to ana-

lyze wave propagation in curved structures other than

waveguides of constant cross section and curvature. In

particular, Lewin [7] applied a perturbation technique to

solve the problem of a rectangular waveguide uniformly

twisted about a straight axis. In addition, Chang and

Kuester [8] analyzed bent dielectric guides of arbitrary

cross section, and Tripathi and Wolff [9] treated curved

microstrip resonators, both using perturbation ap-

proaches. Although many other authors have dealt with

the problem of electromagnetic waves on various curved

guiding structures, it appears that a detailed analysis of a

propagating TEM mode on a bent coaxial transmission

line has not yet been performed. Specifically, explicit

analytical expressions for the propagation constant and

field structure present in a bent coaxial line have not yet

been deduced. It is the intent of this paper, then, to

develop such analytical expressions by means of the per-

turbation technique first employed by Jouguet and Riess.

With regard to the organization of this paper, it com-

mences with a brief presentation of the characteristics of

the pure TEM mode supported by a straight coaxial

transmission line. An appropriate orthogonal coordinate

system for the bent coaxial line is then established, after

which Maxwell’s wale equation is written in terms of

these coordinates andI, subsequently, expanded in inverse

powers of the radius of curvature. This expansion permits

analytical forms for the axial fields to be derived to first

order and, later, to second order. Lewin’s wave equation

for his field combination of axial components [5] is then

used in conjunction with the derived first-order axial field

expressions to show that the propagation constant re-
mains unaltered to first order. For the sake of complete-

ness, the field components transverse to the axis of the

bent coaxial line are also evaluated to first order by
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employing the appropriate Maxwell’s equations. In an

effort to obtain the first nonvanishing correction term in

the propagation constant, the axial field components are

then evaluated to second order in the inverse of the

radius of curvature. Taken in conjunction with Lewin’s

wave equation, these results are utilized to obtain an

expression for the second-order correction to the propa-

gation constant, which is the desired first nonvanishing

correction term. Finally, graphical results depicting the

behavior of the propagation constant in a bent coaxial

line are presented.

II. FIRST-ORDER AXIAL FIELDS

For a pure TEM mode propagating on a coaxial trans-

mission line, the electric field has only a radial compo-

nent and the magnetic field only an azimuthal compo-

nent. This simple mode structure, which propagates

unattenuated, is realized in a straight section of coaxial

line having conductors of infinite conductivity. The fields

existing between the inner and outer conductors in the

TEM mode are expressible as

The variables p and ~ denote, respectively, the radial and

azimuthal cylindrical coordinates, while Z denotes the

axial (z-directed) current flowing in the inner conductor.

In these equations, the multiplicative propagating factor

exp ( jot – jkz) has been suppressed. Here OJdenotes the

angular frequency and k the wavenumber or straight-line

propagation constant. In terms of the permittivity ● and

the permeability p of the dielectric between the inner and

outer conductors, k and w are related by k2 = U21.M.

To solve for the propagating fields in a bent section of

coaxial transmission line, it is desirable to establish an

orthogonal coordinate system erected around the coaxial

line axis. Following the work of Tang [6] and Lewin [4],

we find that it is convenient to employ the cylindrical

orthogonal set of coordinates shown in Fig. 1. Here the

location of an arbitrary point P is seen to be specified by

the coordinate set (p, ~, s), where p and @ constitute

transverse polar coordinates relative to the continuously

bending axis of the coaxial line. The axial coordinate s

specifies the location of the cross-sectional plane contain-

ing P along the transmission line axis relative to some

reference point. Assuming that the coaxial line is bent in
one plane and that it has a constant radius of curvature

R, we can write the metric coefficients for this coordinate

system as

h,=l h+=p h,=l–~cosq5. (2)

It is to be noted that these metric coefficients reduce to

those appropriate for the normal cylindrical coordinate

system as the coaxial line is straightened, i.e., as R -~.

Having established a convenient orthogonal set of coor-

dinates for the problem at hand, we commence now to

solve Maxwell’s electromagnetic equations for the props-

(a)

Fig. 1. Geometry of curved coaxial transmission line. (a) Definition of
orthogonal coordinate system employed in the analysis. (b) Cross-sec-
tional view of line.

gating field distribution. For an assumed eJO’ time depen-

dence, Maxwell’s three-dimensional wave equation for the

magnetic field is

–V2H=Vx VxH– V(V. H)=k2H (3)

where H = HO~ + Ho ~ + H#. The s component of this

equation yields a partial differential equation for H,, the

magnetic field component in the direction of propagation.

Since we seek a solution propagating as e ‘y’, the differ-

ential operator d\ds can everywhere be replaced by – y,

whereupon the field components will depend only upon p
and ~. Upon making this replacement and employing the
metric coefficients given in (2), we find that the differen-

tial equation for H, becomes

(4)

Here V,2 denotes the so-called transverse Laplacian oper-
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ator, i.e., expanded as

(5)

Equation (4) is a complicated partial differential equation

into which the solutions (as yet unknown) for the trans-

verse field components lid and HP are coupled. Written

as such, it cannot be solved in closed form.

A solution for this equation can be effected if one

employs a perturbation technique [4], whereby the field

components and the propagation constant are each ex-

panded into a series containing inverse powers of the

radius of curvature, i.e.,

H$l
H,= H,O + —+”””

R

Hpl
HP= HPO+— ““”

R+

H+l
H4=HdO+—

R ‘“”” (
y~=y: 1+4 +...

)R’

(6)

The zeroth-order terms appearing here are those which

are appropriate for the TEM mode in a straight coaxial

transmission line. Accordingly, we have

H,O = H,O = O yO = jk (7)

and H40 is given by the second expression of equations

(l). To first order in R-1, (4) reduces, with the aid of (l),

(2), and (6), to

(8)

The solution to this differential equation has been found,

following the general procedure outlined in Andrews [101,

to be

H,l(p, @) =
jkI sin@

27(F – d) [

p{b21n(p\b) –a21n(p\a)

~zb~

+a2–b2}+ 1—ln(a/b) .
P

(9)

As shown in Fig. 1, b constitutes the radius of the inner

conductor and a the inner radius of the outer conductor.

The boundary conditions utilized in arriving at (9) are

specified by the vanishing of tlH~l /8p at p = a and p = b.

Through the use of a similar procedure, a solution for

the axial electric field to first order in R-l can be

obtained. Since the three-dimensional wave equation is
identical in form to that for the magnetic field, i.e.,

– V2E = k2E, the differential equation for E, is de-

ducible from (4) simply by replacing H wherever it ap-

pears with E. A solution to the resulting equation can

then be effected by employing the perturbation technique

discussed above, whereupon the field components can be

E,= E~O+: +”””

EP=.EPo+ ~+.=

E
+1 +...

E@=-E@o+y . (lo)

Recognizing that E,,. = E40 = O and that EPO is given by

the first expression in (l), we find that, to first order in

R-‘ the differential ecluation for E~l reduces to,

(11)

The solution to this differential equation that satisfies the

perfect coriductor boundary conditions that E~l must

vanish at p = a and p Z=b is given by

rE,l(p, +) = k
jkI cos @

e 2m(b2–a2) [

p{a21n(p\a)

a2b2
–b21n(p/b)}+ 1~ln(a\b) . (12)

With the construction of the equations for H$l and E,l,

we have obtained the complete axial solutions to order

R-l for the propagating field configuration in a bent

section of coaxial line.

111. FIRST-ORDER CORRECTION TO

PROPAGATION CONSTANT

To find the first-order correction to the propagation

constant y, it is necessary to resort to the decoupled wave

equation developed in [4] for the axial field combination

G+, defined as

The wave equation sat isfied by G+ is—

V;G+ +(k2 + y’/h:)Gf

(.- & #k2 - y2/’h:)G+ + h,(k’ +3y2/’h:)—
—

[

(?G+ sin $ dG+
. cos~-– ——

ap P a+-1
[

dG+ cos + i?G+
*2yk sin&—=+—-

dp P f3ff511
(14)

where 172= kzh$ + y2. Now G+ is itself expandable in

inverse powers of R according to

where G*, O= O since E.. = H~O = O and
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By retaining terms only to first order in R-1, we can

construct the differential equation governing G+, ~ from

(14); the result is

( -2pcos@ - A1)V;G+,l

Here A ~, as shown by the last expression in (6), is the

coefficient of the first-order term in the expansion of y2

in inverse powers of the radius of curvature. Upon substi-

tuting the relationships for H,l and E,l derived above

into (17), we find that this equation is satisfied only if

AI=O. (18)

Consequently, y2 = y; = – k2 through first order in R-1,

which is to say that the propagation constant for a straight

section of line remains unaltered through first order in

R-] in a bent section of line. This corresponds to a

specific finding in [5], namely, that there is no first-order

change in the propagation constant in a circular wave-

guide when the T&fll mode with electric polarization

parallel to the plane of the bend propagates into a curved

section of guide. We proceed now to evaluate the first-

order terms for the transverse components of the field

distribution present in a bent coaxial line.

IV. FIRST-ORDER TRANSVERSE FIELDS

The partial differential equation governing HPI, the

first-order correction to HP, can be obtained by equating

the p compcments on both sides of (3). After replacing

d \ds by – y and utilizing the metric coefficients given by

(2) in conjunction with the indicated differentiations, we

obtain the fcdlowing differential equation for HPI, valid to

first order in R-[:

2 ilH+l sin 4 HPl
—+

p d4
—H+O – V:HP1 + — = o. (19)

P P2

Although the analytical form for H+O is given by the

second expression in (1), the analytical form for H@l is as

yet unknown. Nevertheless, H+l can be eliminated from

(19) through the use of the Maxwellian equation

[

la
V’H=O= ~ #phJHo)+ ;(h,,l+. )+ ;(PH.) I

(20)

which, to first order in R – 1, becomes

Combining (19) and (21) to eliminate Hall, we obtain the

desired differential equation for HPI, i.e.,

Hpl 2 8HPI 2yo
V,2HPI + — + –— = —H~l –

sin 4
—Hd,. (22)

P2 pdpp P

The form of the forcing function appearing on the right-

hand side is known completely, being given in terms of

the expressions found in (1) and (9). After performing

lengthy and nontrivial manipulations, we find the solution

to (22) to be

I sin 4

(

k2a2b2k1 a2b2
HPl(p,4) = + —ln(a\b)

~(bz–a2) (bz–a2)P2 4P2

k2kz

+ (b2-a’) - ~.fl(P) + ~k2p’(b2 - a2)

_ k2a2b2 kzp?

2( b2–a2)
ln(a/b)fl(p)– yfl(P)

)
(23)

where

kl=~(b2–a2)2+

azb~

~ln2(a/b)

kz=–&(ac –a4bz–a~b4+bc)

+~(b’-a2)ln(a\b)

fl(p)=b21n(p/b) -a21n(P/a). (24)

The solution for HPI conforms to the boundary condition

which requires that the normal component of the mag-

netic field vanish at the surface of a perfect conductor. In

terms of the geometg under investigation, this implies

that HPI must vanish at p = a and p = b.

The remaining first-order component of the magnetic

field, HOI, can be found from the differential equation

which results from equating the 4 components on both

sides of (3). It is, however, easier to obtain a solution for

this quantity by integrating (21) with respect to 4 since

HPI is now known. Upon performing the integration, we

find that H@l is expressible as

(
k2a2b~kl a2b2

H01(P,4) = ~(;20:;2) –
(b2-a’)P2 - 4P2 ln(a’b)

k2k2 kzp?

+ (bz-az) - :fl( P) + ~(b2– a’)

~?azb~

2( b2–az)
ln(a/b)fl(p)

kzpz

1‘f~(p)+~(b2-a2) .
‘8

(25)

From this relationship, one can calculate to first order in

R-1 the amount by which the already existing azimuthal

magnetic field of the TEM mode is modified in a bend of

the coaxial line.

To find first-order solutions for the transverse compo-
nents of the electric field, namely EPI and E41, it is

easiest to resort directly to Maxwell’s curl equations.
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From the @ component of the Maxwell equation V x E = This expression, it shculd be noted, satisfies the bounda~
– jtipH, we obtain condition that the tangential component of the electric

jwph, field must vanish at the surface of a perfect conductor,

EP = —H+ – ; &(h,E, ). (26) i.e., E@l = O at p = a and p = b. With the construction of
Y (31), we have completed the task of obtaining solutions

To first order in the inverse of the radius of curvature, for all field components from Maxwell’s equations to first

this equation becomes, with the aid of the last expression order in the inverse of the radius of curvature of the bent

in (2), coaxial line.

EPI =
i

~ (Hoi - PCOS4H+O)+ ~ ~. (27) V. SECOND-ORDER AXIAL FIELDS

To find the first ncmvanishing correction to the propa-
Upon utilizing (l), (12), and (25), we obtain finally the gation constant y, it is necessary to proceed to the second
following solution for EPl: order in 1?- 1. Firstly, second-order solutions for the prop-

r

Ices ~

{

k2a2b2kl
agating axial field components must be derived from the

Ep,(p, @) = ~ appropriate differential equations for H, and E,. These
e m(b2–a2) – (b2–a2)p2 second-order solutions, denoted by H~z and E,z, are just

a2b2 k2k2 1
the coefficients of the second-order terms in the expan-

+— ln(a/b)+ z
4p2

sions of H, and E, in inverse powers of R, i.e.,
(b - a2) + ~f’(p)

+ kzp~

~(b2 - ~Z) _ k2a’bZ2(b2 – a2)
ln(a/b)~l(p)

kzpz

}
‘~l(p)+; (b2-a2) .

‘8
(28)

H,l H,2
H~=H,O+— —

R+ R2 +””’

(32)

A comparison with (23) and (25) reveals that no new

terms appear in the expression for EPI that were not Secondly, H,2 and E~2 must be substituted into the

present in the expressions for the first-order transverse differential equation governing the second-order solution

magnetic field components. for the axial field combination Gf,2, defined by

Bv tmoceedinx ii a sitnilar manner. we can deduce a. .
solution for the first-order contribution to the azimuthal

r
~ H,2 .

electric field in a’ bent section of coiixial line. Specifically,
G *,Z = E,2-t-j (33)

●

we find that the 4 component of the Maxwell equation
V x H = jticE yields th~ following equation for E;:

It is then a straightforward matter to solve for A,, the

1

( }

coefficient of the-second-order term in the expansion of

.E4 = –YHP– :V@sl) , (29) ~z, i.e.,
jweh,

Expanding this equation to first order in R-1, we find

that E@l satisfies

(30)

Through a utilization of (9) and (23), we obtain the

solution for Eol in final form, namely,

a2b2 k2k2
–—In(a/b)+ z

4p2 (b -a2)

kzazbz

+ ~fl(p) + &k2p2(b2 – a2) –
2( b2–a2)

kzpI

“ln(a/b)fl(p)–
}

-@( P) .

( Al

)
yz=y~l+ —+””” .

R2
(34)

In writing this relationship, we have used the previously

deduced fact that the first-order correction to y2 van-

ishes.

The partial differential equation from which H~2 is

obtainable can be constructed by expanding (4) to second

order in R – 1 and, subsequently, retaining only those

terms proportional to R ‘2. Since terms containing the

first-order field solutions H,l, HPI, and Hol appear in the

resulting expression, it is then necessa~ to utilize the

previously derived solutions found in (9), (23), and (25).
As a result, we find 1hat the differential equation govern-
ing H~2 becomes, after some rearrangement,

(31)
{

V,2H,2 = jkIsin2@ ~ + a2p2fl(p) + a3p2 + al
}

(35)
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where

1

a!= ~w(bz–az)

3k2

“= 4~(bz–a2)

Ilkz
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4kza1b2kl
—

(b’ - a’)
–2a2b21n(a/b)

)

‘3 = – 167

1

a4 = 2m(b2 – a’)
{3(b’ - a2) + k2a’b21n(a/b)}. (36)

It can be shown that the solution for H,z which satisfies

the appropriate boundary conditions is given by

ff,, (p,~) =
jkI sin 2@

(
hip’ + h2p’f2(p) + )

m(b’ – az)

+ k4P4fI(P) + kp4 + kj
}

(37)

where fz is the following function of p:

f2(~)=b41n(p/b) –a41n(p/a). (38)

The various h, appearing in (37) are constants defined by

h,= 2(b2~U2) {b,(a’ - b4)

+4b2a2b21n (a/ b)(gla4 – g2b4)+4b3(a6 – b6)

+ b2(b’ – az)(g~a’ – g~b’)}

wbz
h2=— bl+a~

h3= =
2( b2+a2) (

a’b’(az - b2)[4b, - b2(a2 - b2)]

[

4b2(a2 – bz)
+2a4b41n(a/b) b~+

k2 1}

lla=~(bz–a2)bz

h5=m(b2–a2)b3

h,=~(b2-a2)b4 (39)

(40)

The solution for H,2 given by (37) conforms to the bound-

ary conditions that dH~2 /dp = cos ~H,l at p = a and

P = b, Which are deducible from Maxwell’s equations.

By following a procedure similar to that outlined above,

the partial differential equation for the axial electric field

to second order in R-1 can be deduced. The result, which

follows from a consideration of the explicit analytical

forms for the first-order field components EJI, EPI, and

E+l, is

([
V,2E,Z = jkqI cos2@ ~ + Czpzfl(p) + Cqpo + CJ1

+C5 + C6f)2 + c7f~(P) + c@2f~(P)
)

(41)

where m denotes the intrinsic impedance of the dielectric

medium between the conductors of the coaxial line,

r
q.= !.

E

The c, coefficients appearing in (41) are defined as

1 (
2k2a2b2kl

cl=7(b~_a2) (b2–a2) –azb21n(a/b)
)

3k2

C2= – 4~(b2 –a*)

3k2

C3= 16rr

i.e.,

(42)

1

(
kza’b~

-~(b’-a’)+y ln(a/b)
C4= m(bz– a’) }

1

{

2k2k2
-!(b*_ aI)

c5=m(b2–a2) – (bz–az) 2

+ k~aIb?

~ln(a/b)
}

k2

C6=– G

1

(

k~azb~

In(a/b)–l
c7=m(b2–a2) (bZ– a’) }

– k’

C8= 2~(bz–az) “
(43)

Once again following lengthy computations, we arrive at

the following analytical solution for E.2:

E,2(p, @) =
jkqI

([
cos2@ elp2 + e2p2f2(p) + ~

~(b2–a2)

+ eip4fl( p) + e5p4 + e61
2 4 2 2

+t5~+Z6fi +d7~f1(p) +E7~(a2-b2)

P4 P4

}
+ Eg---fl(p) +28 Z(a2–b2) +&lnp+ZIO .

(44)
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The various ei found in this equation are constants de-

fined by .

7 , {d,a’b’(a’ - b4)ln(a/b)
“=( b’+a)

+d,(ac– b’)+ dl(a’– b’)}

r d~

‘2= b2+a2

‘3= (b’~a’)
{d3a4b4(b2 - a’)+ d,a’b’(a’ - b’)

–d,a4b41n(a/b)}

ea=m(bz–a’)d~

es = ~(b’ – a’) d~

e6=~(b2–a2)d~

where

dz=$

(45)

d3=~–~(b2–a2)

d~=~. (46)

With regard to the coefficients Z5 through ~~ appearing in

(44), they are expressible in terms of the previously de-
fined c, by

Zi=w(b’–az)c, (47)

where i = 5, 6, 7, 8. Expressions for the remaining Zi

coefficients, 15gand ZIO, are

~ (b’-a’)

{

7k2

C9= ln(a/b) 64( b2–a2)
[b’+ a’-a2b2(b2+a2)]

–~k2a2b21n(a/b) –~(b2–a2)

}

(azlnb - bzlna) a’b’
Elo =

(b’ - a’)
Z9 – ~ln(a/b)ZT. (48)

As with E,l, E,2 satisfies the boundary conditions

E,2(a, @) = E~2(b, ~) = O; i.e., itvanishes at the surfaces of

the inner and outer conductors. With the development of

(37) and (44), the solution of Maxwell’s equations for the
axial fields to second order in R – 1 is complete.

VI. SECOND-ORDER CORRECTION TO

PROPAGATION CONSTANT

The partial differential equation governing the second-

order axial field combination G*, z, defined by (33), is

deducible by retaining only terms of second order in R-l

in the general differential equation for G+, i.e., (14). The

result, obtainable with the aid of (34) and–the last expres-
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Fig, 2. Dependence of E@ and H+ upon radius of curvature for 141

cable at 10 GHz.

sion in (2), is

+2k2p2cos2~G~,l

( i? 1 a

)Tj2pcos@ sin@ —G~,l+–cos@— G~,l . (49)
dp P d+

Upon substitution of the derived analytical forms for the

axial fields which comprise G*, ~ and Gf,2, specifically (9),

(12), (37), and (44), equation (49) evolves into a multitude
of terms. It turns out that the resulting equation is satis-

fied only if AZ has the following functional form:

2

(

7k2
Az=–

In(a/b) 64( b2–a2)
[b’+a.’ - a’b’(b’+a’)]

–~k2a2b21n (a/b) –~(b2–az)
)

2k2a2b2

( }
~(b2-a2)2+ ~ln2(a\b) .

+ (bz - # 32

(50)

This expression then, as an examination of (34) reveals,

constitutes the desired first nonvanishing correction to

the propagation constant.

VII. GRAPHICAL RESULTS

Plotted in Fig. 2 are curves depicting how the fields

which exist in a straight section of coaxial line, namely EP
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Fig. 3. Dependence of Es and H, upon radial coordinate for 141
cable at 10 GHz.

and H+, change upon entering a bent section of coaxial
line. The independent variable here is the ratio of the

outer conductor (inner) radius to the transmission line

radius of curvature, a/R. Hence, a \R = O represents the

case of infinite radius of curvature, i.e., the straight coax-

ial line. The dimensions of the transmission line employed

here are those which are appropriate for the commonly

used 141 solid dielectric cable, in which Teflon serves as

the dielectric. For this particular line, the outer conductor

outer diameter is 0.141 in, the characteristic impedance is

50 Q, and a/b = 3.27. With regard to the range of the

variable a/R, itshould be mentioned that mechanically a

safe “bend” radius for the 141 cable corresponds to

a \R = 0.18, while an extreme case in which the inner

bend radius equals the cable radius corresponds to a/R

= 0.42. The field magnitudes appearing in Fig. 2, de-

ducible through the use of (l), (25), and (28), are evalu-

ated at p = b and ~ = 10 GHz and subsequently normal-

ized to unity at a/R = 0, An examination of this figure

reveals that IEP I decreases, whereas \Ho I increases, upon

entering a bent section of the coaxial line.

With regard to the field components that do not exist in

a straight coaxial transmission line, these are plotted in

Figs. 3 and 4 for the bent 141 solid dielectric cable. In

particular, the (first-order) axial fields E, and H,, which

are calculable from (9) and (12), appear in Fig. 3, while

the transverse fields Ed and Ho, calculable from (23) and

(31), appear in Fig. 4. In these graphs, the independent
variable is the normalized radial coordinate, p/b, while

the radius of curvature is held fixed at R = 0.147 in

(which corresponds to a/R= 0.4). The field magnitudes,
which are evaluated at 10 GHz as in Fig. 2, are refer-
enced to EPO(p = b) for the electric field components and

to H@O (p = b) for the magnetic field components. It is

seen from Figs. 3 and 4 that even in the case of the severe

radius of curvature under consideration, the field compo-

nents which exist only in a bent section of the 141 coaxial

line amount to less than 7% of the straight-line unper-

turbed fields.

O.CQ ‘.

1.Ic.9 1.m 2,CW 2,WJ 3.Km 3,5W

Fig. 4, Dependence of E@ and HP upon radial coordinate for 141

cable at 10 GHz.
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Fig. 5. Dependence of propagation constant upon radius of curvature
for 141 cable.

Plotted in Fig. 5 are curves depicting the dependence

of the normalized propagation constant upon the radius

of curvature of a bent coaxial transmission line. Once

again, a bent section of 141 solid dielectric cable is

assumed to be the propagating medium for the perturbed

TEM mode. The dependent variable plotted here is ~/k,

where ~ = y/j, and as such is the ratio of the phase

constant for the bent cable to that for the straight cable

since A ~ is real. Three curves, each corresponding to one

of the three commonly utilized operating frequencies of 1,

10, and 20 GHz for the 141 cable, appear in Fig. 5. Art

examination of this figure reveals that the propagation

constant can increase (the 20 GHz curve does very slightly)
or decrease when the propagating TEM mode enters a

bend, depending upon the value of frequency. It is noted

that results which are numerically quite close to those of

Fig. 5 can be obtained for a 085 solid dielectric cable,

which is also a commonly used coaxial line. This cable has

an outer conductor outer diameter of 0.085 in and a

characteristic impedance of 50 Q.
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VIII. CONCLUSIONS

A TEM mode propagating along a coaxial transmission

line will cease to be purely TEM in character upon

entering a bend, since there it will develop axial compo-

nents of both the electric and magnetic fields. Moreover,

an azimuthal electric field and a radial magnetic field, not

present in the pure TEM mode, will arise in the bend.

With regard to the existing azimuthal magnetic field and

radial electric field, they will experience some change in

magnitude in the bent section of line. In all cases, the

alterations in the electromagnetic field structure will be

inversely proportional to the radius of curvature of the

bend, for small amounts of curvature. On the other hand,

the propagation constant of the wave suffers a change in

magnitude inversely proportional, for small curvature, to

the square of the radius of curvature. In addition, this

change in magnitude is dependent upon the values of the

straight-line propagation constant and the inner and outer

conductor radii.
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